(10)=-16t^2+1700

Simple and best practice solution for (10)=-16t^2+1700 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10)=-16t^2+1700 equation:



(10)=-16t^2+1700
We move all terms to the left:
(10)-(-16t^2+1700)=0
We get rid of parentheses
16t^2-1700+10=0
We add all the numbers together, and all the variables
16t^2-1690=0
a = 16; b = 0; c = -1690;
Δ = b2-4ac
Δ = 02-4·16·(-1690)
Δ = 108160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108160}=\sqrt{10816*10}=\sqrt{10816}*\sqrt{10}=104\sqrt{10}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-104\sqrt{10}}{2*16}=\frac{0-104\sqrt{10}}{32} =-\frac{104\sqrt{10}}{32} =-\frac{13\sqrt{10}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+104\sqrt{10}}{2*16}=\frac{0+104\sqrt{10}}{32} =\frac{104\sqrt{10}}{32} =\frac{13\sqrt{10}}{4} $

See similar equations:

| (2x/4)+14=-22 | | 32+41=x | | -4+9m=-67 | | (61-2x)+(8x+5)=90 | | 2d-10d+35=2d-15 | | 3.8=b-2.5 | | 3x-2=4(x+7) | | -1=2c-8c-7-5-3c-9-9-6 | | 7(m-3)=-8m+9 | | -72-6x=30 | | –3n=57 | | 7x–9=2x+6 | | 7+9y+11+13=9y+4 | | x–9=2x+6 | | 5y+10=20° | | x/8=13/20 | | X=5y*X2 | | y=×-0.04×2 | | 3(-12+9s)=12(6s+5) | | 15+4a-6=21,a= | | y=−54−1 | | -10(c+6)-5(c-6)=2c+11 | | y=5−3 | | 2(u-9)=4, | | -7b+3b=20 | | 32=0.4xX | | -2-7v+12-3v=8+5v | | -98+-7=x | | 8+h=13 | | h(10)=-16(10)^2+1700 | | 3p-1=5p= | | n+7/2+2=5 |

Equations solver categories